o

;‘-..:P.A?
%% £
L5 "ol

OReroy
Logic programming 111
Henrik Bostrom

Stockholm University

= Arithmetics

= Meta-logical predicates

e Cut

= Extra-logical predicates

« Predicates to find all solutions

St&ihqlm
Arithmetics pniversty
XisY - The arithmetic expression Y is evaluated and
unified with X.
X =:= - The values of X and Y are the same.
X=\=Y - The values of X and Y are different.
X<y - The value of X is less than the value of Y.
X>Y - The value of X &r is greater than the value of Y.
X=<Y - The value of X is less than or equal to the value
of Y.

X>=Y - The value of X is greater than or equal to the

value of Y.

o

Example Stockholm

University
sum([],0).
sum([X|L],Sum):-
sum(L,RestSum),

Sum is RestSum+X.

sum(L,Sum):- sum(L,0,Sum).

sum([],Sum,Sum).

sum([X|L],PreviousSum,Sum):-
SumSoFar is PreviousSum+X,
sum(L,SumSoFar,Sum).

St&ihqlm
Meta-logical predicates University
Terml == Term2 - Terml and Term2 are identical
Terml \==Term2 - Terml and Term2 are not identical
Terml = Term?2 - Terml and Term2 are unified
var(X) - X is an (uninstantiated) variable
nonvar(X) - X is not an (uninstantiated) variable
ground(X) - X does not contain a variable
atom(X) - X is a constant and not a number
number(X) - X is a number
atomic(X) - X is a constant or a number

compound(X) - X is a term with arity > 0

o

Dy Dok

Metalogical predicates Stockholm
University
functor(T,N,A) - The term T has the term name N and
the arity A.

?- functor(p(a,X),N,A).

N=pA=2
?- functor(T,f,3).

T =f(X,Y,2)
arg(No,T,Arg) - Argument no. No in the term T

is unified with Arg.
?- arg(3,p(0,s(0),S(S(O))),X).
X = s(s(0))
?- arg(2,p(a,b),a).
no

A
"..:1«3&’
St::;_ékhqlm
) . University
Meta-logical predicates
T=..L - L is a list where the first element is the term

name of T and the rest of the list concists of

of the arguments of T.

?- p(a,s(X),Y) =.. L.
L = [p,a,s(X),Y]

?-T =..[a,b,c,d].
T = a(b,c,d)

Stockholm
Unification with occur's check "vesw
unify(X,Y):- var(X), var(Y), X=Y.
unify(X,Y):- atomic(X), atomic(Y), X=Y.
unify(X,Y):- var(X), nonvar(Y), not_in(X,Y), X=Y.
unify(X,Y):- nonvar(X), var(Y), not_in(Y,X), X=Y.
unify(X,Y):- compound(X),compound(Y), term_unify(X,Y).

not_in(X,Y):- var(Y), X \==1Y.
not_in(X,Y):- nonvar(Y), functor(Y,_,N), not_in(X,N,Y).

not_in(_,0,).
not_in(X,N1,Y):- N1 > 0, arg(N1,Y,Arg), not_in(X,Arg),
N2 is N1-1, not_in(X,N2,Y).

LS
Stc;_ckhqlm
University

Unification with occur's check (cont.)

term_unify(X,Y):-
functor(X,F,N),
functor(Y,F,N),
unify_args(N,X,Y).

unify_args(0,_,).
unify_args(N1,X,Y):-
N1=>0,
arg(N1,X,ArgX), arg(N1,Y,ArgY),
unify (ArgX,ArgY), N2 is N1-1,
unify_args(N2,X,Y).

Cut (1) OReroy
Cut is a predicate that is used to reduce the number of
(unnecessary) goal reductions. Assume we have a unary goal G
and a clause G' :- G1, ..., Gi-1, !, Gi+1, ..., Gn, where G and G’

have an mgu 6.
If cut has been reduced (after (G1, ..., Gi-1)0) the following
holds:
* No other clause will be used for reducing G.

e Alternative reductions for (G1, ..., Gi-1)06 will not be tested.

= The remaining goals (Gi+1, ..., Gn)0 are not affected by the

cut.

LS
Stc;_ckho_lm
University

Example (green cut)

merge([X|Xs],[YIYs],[X]|Zs]):-
X=<Y,!,
merge(Xs,[Y]|Ys],Zs).
merge([X|Xs],[YIYs].[Y]Zs])):-
X=>Y,1
merge([X]|Xs],Ys,Zs).
merge([],Ys,Ys):-1.
merge(Xs,[],Xs).

o dilr

Dy Dok

St;:;_ékho_lm
Exempel (red cut) pniversity
delete(_,[1.[D.
delete(X,[X|L1],L2):-
delete(X,L1,L2).
delete(X,[Y|L1],[YIL2D):-
X\==Y,
delete(X,L1,L2).
delete(_,[1.[D-
delete(X,[X|L1],L2):- I, delete(X,L1,L2).
delete(X,[Y|L1],[Y|L2]):- delete(X,L1,L2).
Oersity

Example

min(X,Y,X):- X =<Y.
min(X,Y,Y):- X > Y.

min(X,Y,X):- X =<Y, L
min(X,Y,Y).

min(X,Y,Z2):- X =<Y, I, X=2Z.
min(X,Y,Y).

LS
Stc;_ckho_lm
University

Example

if then_else(P,Q,):- P, Q.
if_ then_else(P, ,R):-\+ P, R.

if_then_else(P,Q,):-P, 1, Q.
if_ then_else(_, ,R):- R.

not(G):- G, !, fail.
not().

St;:;_ékho_lm
University

Extralogical predicates

read(X) - read term from current stream
write(X) - write term to current stream
see(File) - open the file File for reading
seen - close the current file

tell(File) - open the file File for writing
told - close the current file

?- write(‘Give answer: "), read(Answer).
Give answer: yes.

Answer = yes

kA
Y
Example Stockholm

University

process_data(lnput,Output):-

see(Input),

tell(Output),

repeat,

read(X),

do_something(X),

X == end_of file,

told,

seen.

do_something(end_of_file):-!.
do_something(X):-
transform(X,Y),
write(Y), write('."),nl.

LS
o
Extra-logical predicates stockholm
niversity
assert(C) - The clause C is added to memory
asserta(C) - C is added first
assertz(C) - C is added last

retract(H)* - The first clause with a head unifying with H
is removed.

retractall(H) - All clauses having a head that unifies with H
are removed

clause(H,B)* - Unify H with the head and B with the body
of a rule.

*More than one answer can be obtained (upon back-tracking).

o dilr

Dy Dok

%tia'ﬁkhqltm
Example niversity
p(a). p(b). p(c).
a(1). a(2). a(3).
?- p(X), q(Y), assert(r(X,Y)), fail.
r(a,1). r(a,2). r(a,3).
r(b,1). r(b,2). r(b,3).
r(c,1). r(c,2). r(c,3).
Stockholm
i University
Findall
findall(E,G,L)

- for every reduction of G, add element E to L
parent(a,b). parent(e,b). parent(b,c). parent(b,d).

?- findall(P,parent(P,C),L).
L = [a,e,b,b]

?- findall((GP,GC), (parent(GP,P), parent(P,GC)),L).
L = [(a,c),(a,d),(e,c).(e,d)]

LS
Dy Dok

Bagof Stockholm

University
bagof(E,G,L)
- For each reduction of G, where non-quantified (i.e.,
they are not in E or specified with ©) are assumed to
refer to the same instance, add E to L.

parent(a,b). parent(e,b). parent(b,c). parent(b,d).

?- bagof(P,parent(P,C),L).
C=blL=][ae];

C=cL=[b];
C=dL=1[b]
?- bagof(P,Cparent(P,C),L).

L = [a,e,b,b]
LS
"..;1«3&’

ockhol
Setof Dy

setof(E,G,L)
- as bagof(E,G,L), but where L is sorted and
without duplicates.

parent(a,b). parent(e,b). parent(b,c). parent(b,d).

?- setof(P,parent(P,C),L).
C=blL=][ace]l;

C=cL=[bl;
C=dL=1[b]

?- setof(P,C™parent(P,C),L).
L = [a,b,e]

10

