## Logic programming III

Henrik Boström
Stockholm University

- Arithmetics
- Meta-logical predicates
- Cut
- Extra-logical predicates
- Predicates to find all solutions


## Arithmetics

| $X$ is $Y$ | - The arithmetic expression $Y$ is evaluated and <br> unified with $X$ |
| :--- | :--- |
| $X=:=Y$ | - The values of $X$ and $Y$ are the same. |
| $X=\backslash=Y$ | - The values of $X$ and $Y$ are different. |
| $X<Y$ | - The value of $X$ is less than the value of $Y$. |
| $X>Y$ | - The value of $X$ är is greater than the value of $Y$. |
| $X=<Y$ | - The value of $X$ is less than or equal to the value <br>  <br> $X>=Y$ |
|  | - The value of $X$ is greater than or equal to the |
|  | value of $Y$. |

## Example

```
sum([],0).
sum([X|L],Sum):-
    sum(L,RestSum),
    Sum is RestSum+X.
```

sum(L,Sum):- sum(L, 0, Sum $)$.
sum([],Sum,Sum).
sum([X|L],PreviousSum,Sum):-
SumSoFar is PreviousSum+X,
sum(L,SumSoFar,Sum).

## Meta-logical predicates

Term1 == Term2 - Term1 and Term2 are identical
Term1 $\backslash==$ Term2 - Term1 and Term2 are not identical
Term1 $=$ Term2 $\quad-$ Term1 and Term2 are unified
$\operatorname{var}(\mathrm{X}) \quad-\mathrm{X}$ is an (uninstantiated) variable
nonvar $(\mathrm{X}) \quad-\mathrm{X}$ is not an (uninstantiated) variable
ground $(X) \quad-X$ does not contain a variable
atom $(X) \quad-X$ is a constant and not a number
number $(X) \quad-X$ is a number
atomic $(X) \quad-X$ is a constant or a number
compound $(X) \quad-X$ is a term with arity $>0$

## Metalogical predicates

```
functor \((T, N, A) \quad-\quad\) The term \(T\) has the term name \(N\) and the arity A .
?- functor \((\mathrm{p}(\mathrm{a}, \mathrm{X}), \mathrm{N}, \mathrm{A})\).
\(\mathrm{N}=\mathrm{pA}=2\)
?- functor(T,f,3).
\(\mathrm{T}=\mathrm{f}(\mathrm{X}, \mathrm{Y}, \mathrm{Z})\)
arg(No,T,Arg) - Argument no. No in the term T is unified with Arg.
?- \(\arg (3, p(0, s(0), s(s(0))), X)\).
\(\mathrm{X}=\mathrm{s}(\mathrm{s}(0))\)
?- \(\arg (2, p(a, b), a)\).
no
```


## Meta-logical predicates

$\mathrm{T}=. . \mathrm{L} \quad-\mathrm{L}$ is a list where the first element is the term name of T and the rest of the list concists of of the arguments of $T$.
?- $p(a, s(X), Y)=. . L$.
$L=[p, a, s(X), Y]$
?- $T=. .[a, b, c, d]$.
T = a(b, c, d)

## Unification with occur's check

unify $(X, Y):-\operatorname{var}(X), \operatorname{var}(Y), X=Y$.
unify $(X, Y)$ :- atomic $(X)$, atomic $(Y), X=Y$.
unify $(X, Y)$ :- $\operatorname{var}(X)$, nonvar( $Y$ ), not_in $(X, Y), X=Y$.
unify $(X, Y)$ :- nonvar $(X), \operatorname{var}(Y)$, not_in $(Y, X), X=Y$.
unify $(X, Y)$ :- compound $(X)$,compound $(Y)$, term_unify $(X, Y)$.
not_in $(X, Y):-\operatorname{var}(Y), X \backslash==Y$.
not_in $(X, Y)$ :- nonvar( Y ), functor( $\mathrm{Y}, \mathbf{,}, \mathrm{N})$, not_in $(\mathrm{X}, \mathrm{N}, \mathrm{Y})$.
not_in(_, 0,_).
not_in(X,N1,Y):- N1 > 0, arg(N1,Y,Arg), not_in(X,Arg), N 2 is $\mathrm{N} 1-1$, not_in( $\mathrm{X}, \mathrm{N} 2, \mathrm{Y})$.

Unification with occur's check (cont.)

```
term_unify(X,Y):-
    functor(X,F,N),
    functor(Y,F,N),
    unify_args(N,X,Y).
unify_args(0,_,_).
unify_args(N1,X,Y):-
    N 1 > 0,
    arg(N1,X,ArgX), arg(N1,Y,ArgY),
    unify(ArgX,ArgY), N2 is N1-1,
    unify_args(N2,X,Y).
```


## Cut (!)

Cut is a predicate that is used to reduce the number of (unnecessary) goal reductions. Assume we have a unary goal G and a clause $\mathrm{G}^{\prime}$ :- $\mathrm{G} 1, \ldots, \mathrm{Gi}-1,!, \mathrm{Gi}+1, \ldots, \mathrm{Gn}$, where G and $\mathrm{G}^{\prime}$ have an mgu $\theta$.

If cut has been reduced (after (G1, ..., Gi-1) $\theta$ ) the following holds:

- No other clause will be used for reducing G.
- Alternative reductions for (G1, ..., Gi-1) $\theta$ will not be tested.
- The remaining goals $(\mathrm{Gi}+1, \ldots, \mathrm{Gn}) \theta$ are not affected by the cut.


## Example (green cut)

## Stockholm

 University```
merge([X|Xs],[Y|Ys],[X|Zs]):-
        \(X=<Y\) ! !,
        merge(Xs,[Y|Ys],Zs).
merge([X|Xs],[Y|Ys],[Y|Zs]):-
        \(X>Y,!\),
        merge([X|Xs],Ys,Zs).
merge([],Ys,Ys):-!.
merge(Xs,[],Xs).
```


## Exempel (red cut)

```
delete(_,[],[]).
delete(X,[X|L1],L2):-
    delete(X,L1,L2).
delete(X,[Y|L1],[Y|L2]):-
    X\== Y,
    delete(X,L1,L2).
delete(_,[],[]).
delete(X,[X|L1],L2):- !, delete(X,L1,L2).
delete(X,[Y|L1],[Y|L2]):- delete(X,L1,L2).
```


## Example

## Stockholm

 University$$
\begin{aligned}
& \min (X, Y, X):-X=<Y . \\
& \min (X, Y, Y):-X>Y .
\end{aligned}
$$

$\min (X, Y, X):-X=<Y,!$.
$\min (X, Y, Y)$.
$\min (X, Y, Z):-X=<Y,!, X=Z$.
$\min (X, Y, Y)$.

## Example

```
if_then_else(P,Q,_):- P, Q.
if_then_else(P,_,R):- \+ P, R.
```

if_then_else(P,Q,_):- P, !, Q.
if_then_else(_,_,R):- R.

```
not(G):- G, !, fail.
```

not(_).

## Extralogical predicates

$\operatorname{read}(X) \quad-$ read term from current stream
write(X) - write term to current stream
see(File) - open the file File for reading
seen - close the current file
tell(File) - open the file File for writing
told - close the current file
?- write('Give answer: '), read(Answer).
Give answer: yes.
Answer = yes

## Example

```
process_data(Input,Output):-
```

see(Input), tell(Output), repeat, read(X), do_something $(X)$, $X==$ end_of_file, told, seen.
do_something(end_of_file):-!.
do_something $(X)$ :transform $(X, Y)$, write(Y), write('.'), nl.

## Extra-logical predicates

assert(C) - The clause C is added to memory
asserta(C) - C is added first
assertz(C) - C is added last
retract(H)* - The first clause with a head unifying with H is removed.
retractall(H) - All clauses having a head that unifies with H are removed
clause $(\mathrm{H}, \mathrm{B})^{*}$ - Unify $H$ with the head and B with the body of a rule.
*More than one answer can be obtained (upon back-tracking).

## Example

```
p(a).p(b).p(c).
q(1).q(2).q(3).
?- p(X), q(Y), assert(r(X,Y)), fail.
r(a,1),r(a,2),r(a,3).
r(b,1).r(b,2).r(b,3).
r(c,1).r(c,2).r(c,3).
```


## Stockholm

 University
## Findall

findall(E,G,L)

- for every reduction of $G$, add element $E$ to $L$
parent( $a, b)$. parent(e,b). parent(b,c). parent(b,d).
?- findall(P, parent(P,C),L).
$\mathrm{L}=[\mathrm{a}, \mathrm{e}, \mathrm{b}, \mathrm{b}]$
?- findall((GP,GC), (parent(GP,P), parent(P,GC)),L).
$L=[(a, c),(a, d),(e, c),(e, d)]$


## Bagof

bagof(E,G,L)

- For each reduction of G, where non-quantified (i.e., they are not in E or specified with ${ }^{\wedge}$ ) are assumed to refer to the same instance, add E to L .
parent( $a, b) \cdot \operatorname{parent}(e, b) \cdot \operatorname{parent}(b, c) \cdot \operatorname{parent}(b, d)$.
?- bagof(P, parent(P,C),L).
$C=b L=[a, e] ;$
$C=c L=[b] ;$
$C=d L=[b]$
?- $\operatorname{bagof(P,C^{\wedge }parent(P,C),L).~}$
$\mathrm{L}=[\mathrm{a}, \mathrm{e}, \mathrm{b}, \mathrm{b}]$


## Setof

setof(E,G,L)

- as bagof( $\mathrm{E}, \mathrm{G}, \mathrm{L}$ ), but where L is sorted and without duplicates.
parent( $a, b$ ). parent(e, b). parent(b, c). parent(b,d).
?- $\operatorname{setof}(\mathrm{P}, \operatorname{parent}(\mathrm{P}, \mathrm{C}), \mathrm{L})$.
$C=b L=[a, e] ;$
$C=c L=[b] ;$
$C=d L=[b]$
?- setof( $\mathrm{P}, \mathrm{C}^{\wedge}$ parent( $\left.\left.\mathrm{P}, \mathrm{C}\right), \mathrm{L}\right)$.
$L=[a, b, e]$

