
1

Logic programming III

• Arithmetics

• Meta-logical predicates

• Cut

Henrik Boström
Stockholm University

• Extra-logical predicates

• Predicates to find all solutions

Arithmetics

X is Y - The arithmetic expression Y is evaluated and p
unified with X.

X =:= Y - The values of X and Y are the same.

X =\= Y - The values of X and Y are different.

X < Y - The value of X is less than the value of Y.

X > Y - The value of X är is greater than the value of Y.

X =< Y - The value of X is less than or equal to the value
of Y.

X >= Y - The value of X is greater than or equal to the
value of Y.

2

Example

sum([],0).

sum([X|L],Sum):-

sum(L,RestSum),

Sum is RestSum+X.

sum(L,Sum):- sum(L,0,Sum).

sum([],Sum,Sum).

sum([X|L],PreviousSum,Sum):-

SumSoFar is PreviousSum+X,

sum(L,SumSoFar,Sum).

Meta-logical predicates

Term1 == Term2 - Term1 and Term2 are identical

Term1 \== Term2 - Term1 and Term2 are not identical

Term1 = Term2 - Term1 and Term2 are unified

var(X) - X is an (uninstantiated) variable

nonvar(X) - X is not an (uninstantiated) variable

ground(X) - X does not contain a variable

atom(X) - X is a constant and not a numberatom(X) X is a constant and not a number

number(X) - X is a number

atomic(X) - X is a constant or a number

compound(X) - X is a term with arity > 0

3

Metalogical predicates

functor(T,N,A) - The term T has the term name N and
the arity A.

?- functor(p(a,X),N,A).
N = p A = 2

?- functor(T,f,3).
T = f(X,Y,Z)

arg(No T Arg) - Argument no No in the term Targ(No,T,Arg) - Argument no. No in the term T
is unified with Arg.

?- arg(3,p(0,s(0),s(s(0))),X).
X = s(s(0))

?- arg(2,p(a,b),a).
no

Meta-logical predicates

T =.. L - L is a list where the first element is the term
name of T and the rest of the list concists of

of the arguments of T.

?- p(a,s(X),Y) =.. L.

L = [p a s(X) Y]L = [p,a,s(X),Y]

?- T =.. [a,b,c,d].

T = a(b,c,d)

4

Unification with occur's check
unify(X,Y):- var(X), var(Y), X=Y.

unify(X Y):- atomic(X) atomic(Y) X=Yunify(X,Y): atomic(X), atomic(Y), X Y.

unify(X,Y):- var(X), nonvar(Y), not_in(X,Y), X=Y.

unify(X,Y):- nonvar(X), var(Y), not_in(Y,X), X=Y.

unify(X,Y):- compound(X),compound(Y), term_unify(X,Y).

not_in(X,Y):- var(Y), X \== Y.

not_in(X,Y):- nonvar(Y), functor(Y,_,N), not_in(X,N,Y).

not_in(_,0,_).

not_in(X,N1,Y):- N1 > 0, arg(N1,Y,Arg), not_in(X,Arg),
N2 is N1-1, not_in(X,N2,Y).

Unification with occur's check (cont.)
term unify(X Y):-term_unify(X,Y):-

functor(X,F,N),
functor(Y,F,N),
unify_args(N,X,Y).

unify_args(0,_,_).

if (N1 X Y)unify_args(N1,X,Y):-

N 1 > 0,
arg(N1,X,ArgX), arg(N1,Y,ArgY),

unify(ArgX,ArgY), N2 is N1-1,

unify_args(N2,X,Y).

5

Cut (!)
Cut is a predicate that is used to reduce the number of

(unnecessary) goal reductions. Assume we have a unary goal G

and a clause G' :- G1, ..., Gi-1, !, Gi+1, ..., Gn, where G and G'

have an mgu .
If cut has been reduced (after (G1, ..., Gi-1)) the following
holds:
• No other clause will be used for reducing G.

• Alternative reductions for (G1, ..., Gi-1) will not be tested.

• The remaining goals (Gi+1, ..., Gn) are not affected by the

cut.

Example (green cut)

merge([X|Xs],[Y|Ys],[X|Zs]):-

X =< Y, !,

merge(Xs,[Y|Ys],Zs).

merge([X|Xs],[Y|Ys],[Y|Zs]):-

X > Y, !,

merge([X|Xs] Ys Zs)merge([X|Xs],Ys,Zs).

merge([],Ys,Ys):-!.

merge(Xs,[],Xs).

6

Exempel (red cut)
delete(_,[],[]).

delete(X,[X|L1],L2):-

delete(X,L1,L2).

delete(X,[Y|L1],[Y|L2]):-

X \== Y,

delete(X,L1,L2).

delete(_,[],[]).

delete(X,[X|L1],L2):- !, delete(X,L1,L2).

delete(X,[Y|L1],[Y|L2]):- delete(X,L1,L2).

Example

min(X,Y,X):- X =< Y.min(X,Y,X): X < Y.

min(X,Y,Y):- X > Y.

min(X,Y,X):- X =< Y, !.

min(X,Y,Y).

min(X,Y,Z):- X =< Y, !, X=Z.

min(X,Y,Y).

7

Example

if then else(P Q) P Qif_then_else(P,Q,_):- P, Q.

if_then_else(P,_,R):- \+ P, R.

if_then_else(P,Q,_):- P, !, Q.

if_then_else(_,_,R):- R.

not(G):- G, !, fail.

not(_).

Extralogical predicates

read(X) - read term from current stream

write(X) - write term to current stream

see(File) - open the file File for reading

seen - close the current file

tell(File) - open the file File for writing

told - close the current file

?- write(‘Give answer: '), read(Answer).

Give answer: yes.

Answer = yes

8

Example
process_data(Input,Output):-

see(Input),
tell(Output),(p),
repeat,
read(X),
do_something(X),
X == end_of_file,
told,
seen.

do_something(end_of_file):-!.
do_something(X):-

transform(X,Y),
write(Y), write('.'),nl.

Extra-logical predicates

assert(C) - The clause C is added to memory

asserta(C) - C is added first

assertz(C) - C is added last

retract(H)* - The first clause with a head unifying with H

is removed.

retractall(H) - All clauses having a head that unifies with H

are removed

clause(H,B)* - Unify H with the head and B with the body

of a rule.

*More than one answer can be obtained (upon back-tracking).

9

Example

p(a). p(b). p(c).p(a). p(b). p(c).

q(1). q(2). q(3).

?- p(X), q(Y), assert(r(X,Y)), fail.

r(a,1). r(a,2). r(a,3).

r(b,1). r(b,2). r(b,3).

r(c,1). r(c,2). r(c,3).

Findall

findall(E G L)findall(E,G,L)

- for every reduction of G, add element E to L

parent(a,b). parent(e,b). parent(b,c). parent(b,d).

?- findall(P,parent(P,C),L).(,p (,),)

L = [a,e,b,b]

?- findall((GP,GC), (parent(GP,P), parent(P,GC)),L).

L = [(a,c),(a,d),(e,c),(e,d)]

10

Bagof
bagof(E,G,L)

- For each reduction of G, where non-quantified (i.e.,
th t i E ifi d ith ^) d t they are not in E or specified with ^) are assumed to
refer to the same instance, add E to L.

parent(a,b). parent(e,b). parent(b,c). parent(b,d).

?- bagof(P,parent(P,C),L).

C = b L = [a,e];

C = c L = [b];

C = d L = [b]

?- bagof(P,C^parent(P,C),L).

L = [a,e,b,b]

Setof
setof(E,G,L)

- as bagof(E,G,L), but where L is sorted andg (, ,),

without duplicates.

parent(a,b). parent(e,b). parent(b,c). parent(b,d).

?- setof(P,parent(P,C),L).

C b L [a e];C = b L = [a,e];

C = c L = [b];

C = d L = [b]

?- setof(P,C^parent(P,C),L).

L = [a,b,e]

